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DEFECT ANNEALING IN IRRADIATED SEMICONDUCTORS 

INTRODUCTION 

This report describes progress for the period April 1, 1965 to September 30, 

1965 in the research program supported by NASA Research Grant NsG-602. 

Research work in this period involved: 

1. 

2. 

3. 

Further investigation of the possibility of obtaining exact analytic 

solutions of the general annealing equations with one secondary defect 

complex. 

Development of approximate solutions of the annealing equations with 

one secondary defect complex. 

Computer calculations to investigate the behavior of the approximate 

solutions. 

ANNEALING MODEL WITH ONE SECONDARY DEFECT COMPLEX 

The isothermal annealing equations consistent with this model have been given 

previously (1) as 

I 
I 

- di -KIVI 
dt 

dv dt= KlVi - KZV(Io 0 C) + K3C 

dc - dt = K2V(10 - C) - K3C 
l = V + C  

where 

i = interstitial concentration 

V = vacancy concentration 

C - secondary defect complex concentration 
I - impurity concentration 
o - subscript denoting initial value 
Kl,K2,K3 - rate caocefxats 

(3) 

(4) 



I 

For convenience, the fraction of defects not annealed defined by 

can be introduced and equations (l), (Z), (3 ) ,  (4) rewritten as 

* * -KIVp 
dt 

= K Vi P - K2V(Io - C) + K3C 
dt 1 

dc - 
dt KZV(Io - C) - K3C 

i,P = v + c 

Numerical solutions of the set of equations (5) - (8) can be readily obtained 
(1). However, the equations contain a rather large number of constants whose 

values are uncertain. The rate constants Kl,KZ ,K3 are particularly uncertain, 

In view of this situation, a detailed comparison of the predictions of the 

annealing model with experimental isothermal annealing curves is difficult. 

general, it is necessary to select empirical values for the model parameters. 

Attempts to fit annealing data in this manner, using numerical computer solutions 

tf the annealing equation, have so far been unsuccessful. This result is attri- 

buted to the large number of empirical model parameters rather than to a failure 

of the model itself. 

In 

As a consequence of the difficulties with numerical solutions, further efforts 

were made to obtain exact analytic solutions of the annealing equations for the 

general case K1 # K2. 

The set of equations (S), (6), (7) represents a set of coupled, non-linear, first 

order differential equations. Equation (8) is redundant. It is possible t o  re- 

place the coupled set of first order equations by an uncoupled set of second 

order equations. 

( 6 ) ,  (7) lead to 

Differentiation and substitution operations performed with (5) , 

c 
c 
I 

2 K 1  
( 9 )  - (1 + 2) p U 2  + (K1 - K )i p f (KzIo + K3)1 2 4- K,Kliop2 = 0 

dt K1 dt t 2 0  I 



i 
c 

I 
I 

' *  . +. . . .. * .- .I 

(11) 
K + (K2 - K1) C2 I 5 -I- 4- K 3 1 0  K I ) C2 - K3KlC3 - 0 

Kz 

Equation (9) is of par t icu lar  i n t e re s t  since p is the  quantity measured in  

isothermal annealing experiments. 

Equations (9), (lo), (11) can be reduced to  f i r s t  order equations by introducing 

X=*, . J I = ~ ,  a n d Z - -  dc This procedure yields  d t  d t  d t  

- C) Zg 4- AZ2 + (E + FC + GC2) Z 9 HC2 - JC3 = 0 
( I O  dC 

where 

G K2 - K1 



2 
H z K 3 %  + K K I  

3 1 0  - 
K2 

M C K210 + K3 = C 

N R2 

0 2K2 + K1 

P K1K2 

Q K1(K210 + K3) 

BY means of suitable substitutions, equations (12), (13), (14); can all be 

transformed to Abelian differential equations of the first kind, The standard 

Unfortunately, no standard technique exists for solving Abelian equations. 

The substitutions 
1 1 , ~ = - ~ a n d Z -  - 1 X = -  

U1 u2 u3 

transform (12), (13), (14) into 
B 

2 3  U1' - - 4 U1 + (Bp + C) U t  + Dp U1 
P 

I 

u - 1  "m + M $. 8V 1 U: + (W3 + QV*)U; (17) 
V T L  % -  L V-l-L J 

E + FC + GC2 2 + HC2 - JC 3 3  
- c  u3 I 0 - c  u3 =0 

u3 + 

u3 - 0 -  

1 A 
I - c  
0 

The problem of finding exact analytic solutions of the annealing equations if3 

therefore equivalent to the problem of solving the Abelian equation (15) 

Attempts to find exact closed form solutions for (16), (17); and (18) have 

so far been unsuccessful. 
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I 
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APPROXIMATE SOLUTIONS FOR K1#K2 

As has already been indicated, the annealing equation of primary in t e re s t  is 

the p equation 

(9) 

An obvious approximation technique is t o  consider a p a r t i a l l y  l inearized version 

of (9). Consider the equation 

2 2 
a p f  qz) + g $ + ' 1 (  - 0  

3 t 
d t L  

where 

w i l l  be taken t o  be constants. The substi tution 

X - * yields  
d t  

Direct integrat ion of this equation gives 

f dy = -  ( d t  
J ' 2  
N Y  + P y + Y  

1 2 M X  + e - 6 
) = - t + c 1  & - Ln ( 2 d X  + (3-0. E 

where 

6 =(p2 - 4 * q f ' z  

and 

e 2  - 4 d X ) O  



The i n i t i a l  condition X LI: - Klio  fo r  t - 0 requtres tha t  

Equation (20)  can be solved for  X t o  obtain 

Direct integration of (22) leads t o  

The i n i t i a l  condition p = 1 at  t = 0 requires th s t  

Numerical calculations t o  compare the solution (23) with exact computer solutions 

have not yet  been carried out in view of the fac t  tha t  a pore promising approxi- 

mation w a s  discovered. It was observed that  for  a high percentage of experi- 

mental isothermal annealing curves, p shows a very f l a t  plateau region out t o  

qui te  large time values. The interpretation of t h i s  behavior i n  terms of the 

k ine t ic  annealing model is tha t  the rate  constant K3, which governs the break- 

up rate of secondary defect complexes, must be very small. 

then, t h a t  i f  an approximate solution of equation (9) could be found for 

K3 = 0, it would be a very useful so lu tbn .  

It would appear 

For K3 = 0, equation (9) becomes 



or  

2 dE - 
d t  

( h ) 2  f (Bp 9 c )  2 = 0 2 p d t  

The substi tution X = & i n  (25) yields 
d t  

- - - X +  dX A ( B p + C ) = O  
dP P 

The solution of (26) is 

The constant C can be determined from the condition X = K i for  p = 1 as 
3 l o  

(28) 
B C 

c3 = - ( K l i o  .f h 2 x  -m) 

Equation (27) can then be expressed as 

eo tha t ,  i n  terms of the 

a = - Klio p [p + 5 
d t  

i o  

or iginal  constants 

Equation (29) can be used to  find the annealing plateau level  for  a par t icular  

set of model parameters. For K = 0,  the plateau c r i te r ion  is 2- 0. The 

plateau level,  p te: P, is then given by the equation 
3 

1-1.) = 0 
1, K2/K P + 3 " ( P  
A 
0 

In  general, i t  is not possible to  solve (30) expl ic i t ly  fo r  P. However, for  

K2 - Kl the  solution is 
1 

P =  (31) 1 -). io - 
IO 

This r e s u l t  w a s  obtained previously (1) from the analytic solution of the 

annealing equation for the K 1  = K2 case with H small. For a rb i t ra ry  
3 



K 

t o  any desired accuracy. 

, equation (30) can be solved by interation t o  give plateau levels 
2/K1 

In  order t o  obtain the fract ion of 

t o  integrate equation (29 ) .  This 

defects not annealed, p ( t ) ,  it is necessary 

leads t o  

For a rb i t ra ry  K Z / ~ l ,  there is no analytic closed form expression for  the 

integral  
1 

J 

This integral  can be readily integrated numerically, however, A computer 

program was-written t o  perform the integration by Simpsbn's Rule. The solution 

of the annealing equation (251) can then be writ ten as 

It might be noted tha t  G(p) i s  dimensionless and depends on the r a t io s  

- IO 

io 

"MERICAL CALCULATIONS 

The poss ib i l i t y  of using equation (33) to  empirically f i t  isothermal anneallng 

data  was investigated. This curve f i t t i n g  requires that  values be selected 

and Klio. The r a t i o  Io can be established with f a i r l y  good 

i o  
- 

accuracy. Then, since the plateau equation (30) involves only K2 and Io , - - 
Kl io  



a value of K can be selected to  give the proper plateau level. Solving ( 3 0 )  2 - 
K1 

for K2 yields - 
K 1  

The integral  G(p) can now be evaluated and a value of K i 

the best overall  f i t  between the experimental annealing curve and the theo- 

chosen t o  give 
l o  

r e t i c a l  predictions of eq. (33). 

This curve f i t t i n g  procedure w a s  employed for  an experimental isothermal anneal- 

ing curve obtained by Pigg (2) for  n-type germanium a t  455OC. In t h i s  case, 

5 = 2.81 and the observed plateau level is P - 0.22. 

value of K 

The required empirical 
io 

is given by ( 3 4 )  as K2 = 0.0539. Figure (1) shows the experi- - 2 - 
mental curve and the best theoretical  f i t .  Further calculations of t h i s  type 

are  i n  progress for  other isothermal annealing curves reported i n  the l i t e r a -  

ture. 
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